1.1	Proposal type	Master thesis project
1.2	Name	Integrative Multi-Scale Computational Modeling of Burn Wound Acute Phase Re-
		sponse: A Mechanistic-Omics Approach with Surrogate Model speedup
1.3	Description	The activation of the complement system after burn injury is an essential component of the inflammatory response and mediates various immune reactions. This project presents a comprehensive multiscale computational framework that simulates the acute inflammatory phase during the first 18 days after burn injury through mechanistic modeling enhanced by omics data integration and surrogate model acceleration.
		Objectives: • Develop Agent-Based Multi-scale modeling with omics data integration using the Glazier-Graner-Hogeweg (GGH) model to simulate inflammatory agents behavior[2]
		 Integrate three distinct temporal and spatial scales: molecular-level omics dynamics, cellular-level agent interactions, and tissue-level spatial diffusion patterns[1] Implement neural network-based surrogate models to approximate computationally expensive molecular dynamics simulations while maintaining biological fidelity[3]
		References:
		[1] John W Keyloun et al. "Early transcriptomic response to burn injury: severe burns are associated with immune pathway shutdown". In: <i>Journal of Burn Care & Research</i> 43.2 (2022), pp. 306–314.
		[2] H Ibrahim Korkmaz et al. "An in silico modeling approach to understanding the dynamics of the post-burn immune response". In: Frontiers in Immunology 15 (2024), p. 1303776.
		[3] Ioannis Papapanagiotou et al. "From simulations to surrogates: Neural networks enhancing burn wound healing predictions". In: <i>Journal of Computational Science</i> (2025), p. 102593.
1.4	Work environment	Research will be conducted within a computational biology research group specializing in burn injury modeling. The team combines expertise in agent-based modeling, bioinformatics, omics data integration, and neural network development. Access to established frameworks for mechanistic understanding of complement-mediated acute phase responses. The available resources include high-performance computing facilities and comprehensive biological databases. Active participation in research publication contributes to thesis grade evaluation.
1.5	Expectations	Programming proficiency (Python for data analysis and modeling)
		• Understanding of agent-based modeling principles
		 Neural network and machine learning fundamentals Bioinformatics data processing capabilities
		Multi-scale modeling approaches
		 Ability to integrate mechanistic simulations with high-dimensional biological data Strong analytical and problem-solving skills
1.6	Research Tags	computational biology, burn injury modeling, agent-based modeling, omics integration, surrogate models, neural networks, inflammation, complement system, acute phase response, multi-scale modeling
1.7	Programmes	Computational Science (joint degree UvA/VU)
1.8	Contact	Roland V. Bumbuc (r.v.bumbuc@uva.nl)